ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины Б1.В.2 «СТРОИТЕЛЬНАЯ МЕХАНИКА»

для направления 08.03.01 «Строительство»

по профилю

«Автомобильные дороги»

Форма обучения – очная

Санкт-Петербург 2025

ЛИСТ СОГЛАСОВАНИЙ

Оценочные материалы рассмотрены и утверждены на заседании кафедры «Механика и прочность материалов и конструкций»

Протокол № 6 от 18.12.2024 г.

Заведующий кафедрой «Механика и прочность материалов и конструкций»	
«» 2024 г.	 С.А. Видюшенко
COEHACODAHO	
СОГЛАСОВАНО	
Руководитель ОПОП ВО	 А.Ф. Колос
« » 2024 г	

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы, приведены в п. 2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблице 2

Таблица2

Индикатор достижения компетенции	Планируемые результаты обучения	Материалы, необходимые для оценки индикатора достижения компетенции
1	асчетной части проектной продун обильных дорог и по автомобильны	, ·
ПК-1.1.4 Знает классификацию и сочетание нагрузок и воздействий на автомобильные дороги	Обучающийся знает: — базовые для профессиональной сферы физические процессы и явления в виде математических уравнений	Лабораторные работы 1, 2 Типовые задачи 1, 2, 3, 4 Тест заключительный ТЗ Вопросы к зачету
ПК-1.2.3 Умеет применять основные расчетные зависимости и методики выполнения расчетов при подготовке проектной продукции по автомобильным дорогам	Обучающийся умеет: составлять расчётную схему здания и сооружения, определять условия работы элемента строительных конструкций при восприятии внешних нагрузок	Лабораторные работы 1, 2 Типовые задачи 1, 2, 3, 4 Тест заключительный ТЗ Вопросы к зачету

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания

Перечень и содержание лабораторных работ (лабораторный практикум)

Лабораторная работа № 1 (2.6) Определение перемещений в балке при изгибе

Лабораторная работа № 2 (2.14) Определение величины опорной реакции в статически неопределимой балке

Типовая задача 1. Определение перемещений при плоском поперечном изгибе балки методом Мора.

Требуется:

- 1. Построить эпюры изгибающего момента и поперечной силы от заданной нагрузки.
- 2. Определить прогиб и угол поворота заданного сечения методом Мора.

Типовая задача 2. Построение линий влияния в стержнях простых ферм Требуется:

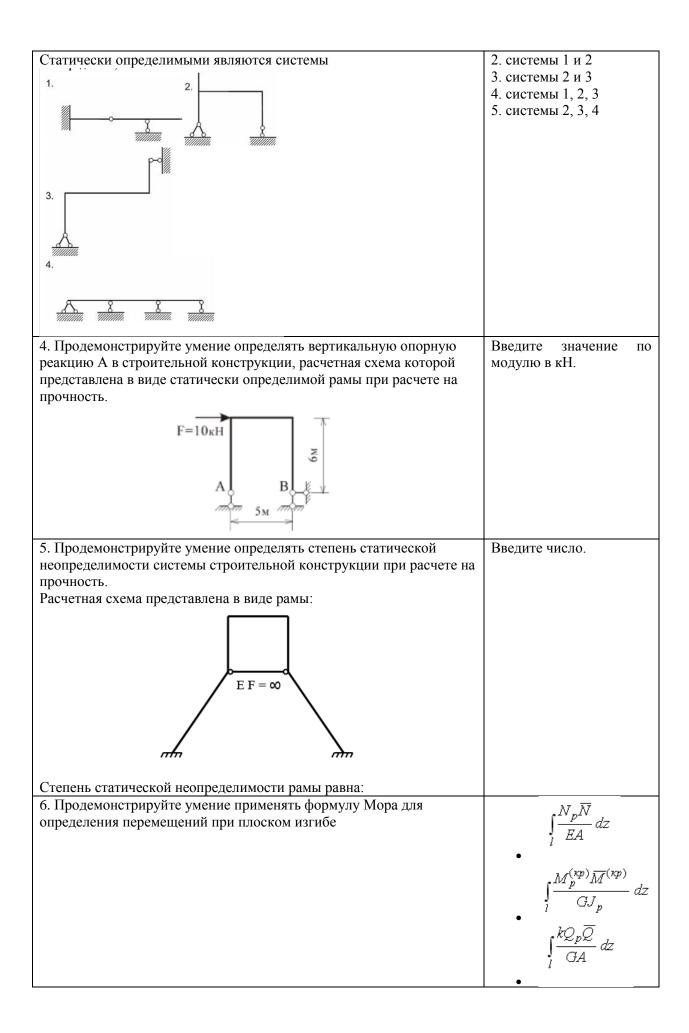
- 1. Построить линии влияния усилий в трех стержнях (по указанию преподавателя).
- 2. Определить усилия по линиям влияния в двух указанных стержнях от собственного веса, подвижного состава (временной нагрузки), а также расчетные усилия.

Типовая задача 3. Расчет плоской статически неопределимой рамы методом сил Требуется:

- 1. Установить степень статической неопределимости, выбрать основную систему (ОС) и лишние неизвестные.
- 2. Составить канонические уравнения.
- 3. Построить эпюры изгибающих моментов в основной системе от единичных неизвестных и заданной нагрузки.
- 4. Вычислить коэффициенты и свободные члены канонических уравнений и выполнить их проверку.
- 5. Решить канонические уравнения и выполнить проверку решения.
- 6. Построить эпюру изгибающих моментов и проверить удовлетворение условий совместности деформаций.
- 7. Построить эпюры поперечных и продольных сил, выполнить проверку эпюр M, Q и N по условиям равновесия всей рамы.
- 8. Подобрать размеры поперечных сечений рамы.

Типовая задача 4. Расчет балки на упругом основании

Требуется:


Построить эпюры изгибающих моментов M, поперечных сил Q, интенсивности нагрузки p, прогибов v для балки на упругом основании.

Задания для лабораторного практикума представлены в электронной информационнообразовательной среде ПГУПС (sdo.pgups.ru) в разделе «Самостоятельная работа».

Перечень тестовых заданий (тест к защите лабораторных работ, ТЛ)

Примеры тестовых заданий:

Вопросы:	Варианты ответов
1.Продемонстрируйте умение рассчитывать степень статической	Введите число.
неопределимости многопролетной балки	
ं भी विकास	
Степень статической неопределимости балки равна:	
2.Продемонстрируйте умение определять число простых шарниров	Введите число.
при определении степени статической неопределимости	
транспортной конструкции, расчетная схема которой представлена на	
рисунке:	
Количество Ш _{пр} =	
3.Продемонстрируйте умение определять степень статической	
неопределимости стержневой системы.	1. система 1

	$\int_{l} \frac{M_{xp} \overline{M}_{x}}{EJ_{x}} dz$
7. Продемонстрируйте умение определять степень статической неопределимости системы строительной конструкции при расчете на прочность. Рама является	 статически определимой 1 раз статически неопределима 2 раза статически неопределима 3 раза статически неопределима 4 раза статически неопределима
8. Продемонстрируйте навыки определения внутреннего усилия при выполнении статического и прочностного расчета для проектирования строительства транспортных сооружений на примере рамы, работающей на изгиб. Вычислите поперечную силу Q в заделке.	Введите значение по модулю в кН.
F=8ĸH ₹	
9. Продемонстрируйте навыки расчета на прочность стержневой системы строительной конструкции на изгиб на примере статически определимой рамы. Какая из представленных эпюр изгибающего момента построена верно?	1.Эпюра M _A 2.Эпюра M _B 3.Эпюра M _C
F=6kH MA 18 18 18 18 18 18 18 18 18 1	
10. Продемонстрируйте навыки определения вертикальной опорной реакции при выполнении статического и прочностного расчета для проектирования строительства транспортных сооружений на примере рамы, работающей на изгиб.	Введите значение по модулю в кН.
$ \begin{array}{c} a) \\ A \\ A \end{array} $ $ \begin{array}{c} q = 2\kappa H/M \\ C \end{array} $ $ \begin{array}{c} 3M \\ \end{array} $ Paragraphs and a paragraphs a paragraphs and the second	
Вертикальная опорная реакция в заделке равна:	

11. Знаете ли Вы, какое предположение лежит в основе модели	1. реактивный отпор
	*
Винклера?	основания изменяется по
Выберите один из вариантов ответа на вопрос	линейному закону
	2. реакция основания
	постоянна по длине
	балки
	3. реактивный отпор
	-
	основания
	пропорционален прогибу
	балки
	4. реактивный отпор
	основания
	пропорционален
	нагрузке
12 2veets by Dry way years property years Dyywysone a	
12. Знаете ли Вы, как можно представить модель Винклера с	1. пружины,
физической точки зрения?	расположенные на
Выберите один из вариантов ответа на вопрос	расстоянии 1м одна от
	другой
	2. бесконечное
	количество несвязанных
	между собой пружин
	3. бесконечное
	количество соединенных
	между собой пружин
	4. упругая нить,
	натянутая на пружины
13. Какой метод применяется при расчете балок конечной длины,	1. метод интегрирования
расположенных на упругом основании?	по частям
Выберите один из вариантов ответа.	2. метод Мора
Выосрите один из вариантов ответа.	3. метод начальных
	параметров
	4. метод
	непосредственного
	интегрирования
14. Какое из приведенных дифференциальных уравнений описывает	1.
изгиб балки, расположенной на упругом основании?	$EJv^{IV} + kbv(x) = q(x) - q_r($
Выберите один из вариантов ответа.	2
Выобрите один из вариантов ответа.	$FIn^{IV} = khv(x) = a(x)$
	$\frac{2}{3}v = \frac{1}{10}v(x) - q(x)$
	$EJv^{IV} - kbv(x) = q(x)$ $3.$ $EJv^{IV} + kbv(x) = q(x) - q_r(x)$
	$EJv^{r} + \kappa bv(x) = q(x) - q_r($
	4.
	EJv'' + kv(x) = -M(x)
15. Знаете ли Вы дифференциальные зависимости между функциями	$1. Y_2' = Y_1$
А.Н. Крылова? Укажите правильную дифференциальную	$2. Y_2' = -Y_1$
зависимость.	$3. Y_2' = Y_3$
Выберите один из вариантов ответа.	$4. Y_2' = -Y_3$
16. Свободные члены в системе канонических уравнений метода сил	1. Перемещения в
по своему физическому смыслу – это:	основной системе от
	действия единичной
	нагрузки
	2. Перемещения в
	исходной системе от
	действия заданной
	Harnvaku
	нагрузки
	нагрузки 3. Перемещения в основной системе от

	I v
	действия заданной
	нагрузки
	4. Перемещения в
	исходной системе от
	действия единичной
	нагрузки
17. Неизвестные системы канонических уравнений метода сил по	1. Усилия или
своему физическому смыслу – это:	реакции
	2. Перемещения в
	основной системе от
	действия единичной
	нагрузки
	3. Перемещения в
	исходной системе от
	действия заданной
	нагрузки
	4. Перемещения в
	основной системе от
	действия заданной
	нагрузки
18. Количество неизвестных при расчете статически неопределимых	1. Числу опорных
систем методом сил равно:	стержней
1	2. Количеству
	реакций в опорах
	3. Количеству
	участков
	4. Числу "лишних"
	связей
19. Основная система метода сил образуется путем:	1. Введения во все
	свободные узлы жестких
	заделок
	2. Добавления
	связей и превращение
	системы в
	кинематически
	определимую
	3. Отбрасывания
	"лишних" связей и
	превращения системы в
	статически опреде-
	лимую
	4. Введения во все
	жесткие свободные узлы
	шарниров
20. Канонические уравнения метода сил составляются из условия:	1. Отсутствия
	перемещений по
	направлению
	отброшенных связей
	2. Наличия
	перемещений по
	г поромощении по
	направлению
	направлению отброшенных связей
	направлению отброшенных связей 3. Равенства
	направлению отброшенных связей

	4. Равенства между собой перемещений по направлению отброшенных связей
21. Коэффициенты при неизвестных в системе канонических уравнений метода сил по своему физическому смыслу – это:	 Перемещения в основной системе от действия единичной нагрузки Перемещения в основной системе от действия заданной нагрузки Перемещения в исходной системе от действия заданной нагрузки Перемещения в исходной системе от действия заданной нагрузки Перемещения в исходной системе от действия единичной нагрузки
22. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=3 2. n=2 3. n=1 4. n=4
23. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=3 2. n=2 3. n=1 4. n=4
24. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=4 2. n=2 3. n=1 4. n=3
25. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=1 2. n=2 3. n=4 4. n=3
26. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=2 2. n=3 3. n=4 4. n=1
27. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=3 2. n=1 3. n=4 4. n=2

28. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=4 2. n=2 3. n=1 4. n=3
29. Укажите степень статической неопределимости балки, изображенной на рисунке	1. n=1 2. n=2 3. n=4 4. n=3
30. Какая модель упругого основания наиболее часто применяется при расчете балок на упругом основании?	 Модель Юнга Модель Винклера Модель упругого пространства Модель Пуассона

Итоговые семестровые тесты содержат по 10 вопросов из банка вопросов.

Материалы для промежуточной аттестации

Перечень вопросов к зачету

Все вопросы проверяют освоение индикаторов ПК-1.1.4 и ПК-1.2.3

Вопросы к зачету	Индикаторы
	достижения
	компетенций
1. Какая наука называется строительной механикой?	ПК-1.1.4
2.Как определяется изгибающий момент в сечении элемента статически	ПК-1.1.4
определимой стержневой системы (с пояснениями и рисунком)?	ПК-1.2.3
3. Как определяется поперечная сила в сечении элемента статически определимой	ПК-1.1.4
стержневой системы (с пояснениями и рисунком)?	ПК-1.2.3
4. Какой дифференциальной зависимостью связаны М и Q в элементах	ПК-1.2.3
конструкций?	
5. Какие системы называются геометрически неизменяемыми, геометрически	ПК-1.1.4
изменяемыми, мгновенно изменяемыми?	ПК-1.2.3
6.С какой целью производится кинематический анализ?	ПК-1.1.4
7. Какие типы опор в плоских системах Вы знаете? Какими характеристиками они	ПК-1.1.4
обладают?	
8. Какой шарнир в плоских системах называют простым, какой сложным, как определяется кратность сложного шарнира?	ПК-1.1.4
9. Что называется расчетной схемой сооружения, перечислите основные элементы	ПК-1.1.4
расчетных схем?	
10. Какие системы называются статически определимыми, статически	ПК-1.1.4
неопределимыми?	
11. Какая ферма называется плоской, какие допущения принимаются при расчете	ПК-1.1.4
плоских ферм?	
12.По каким признакам классифицируются фермы?	ПК-1.1.4
13.Перечислите способы построения линий влияния в стержнях простых ферм.	ПК-1.1.4

14.Поясните способ моментной точки (на примере).	ПК-1.1.4
14. Поясните спосоо моментной точки (на примере).	ПК-1.1.4
15.Поясните способ проекций (на примере).	ПК-1.1.4
13. Поясните спосоо проекции (на примере).	ПК-1.1.4
16.Пояните способ вырезания узлов (на примере).	ПК-1.2.3
10.110яните спосоо вырезания узлов (на примере).	ПК-1.1.4
17. Что называется «линией влияния» (определение), для чего она строится?	ПК-1.1.4
17. 110 называется «пиписи влияния» (определение), для чего она строится:	ПК-1.1.4
18.Как определить усилие по линии влияния от действия сосредоточенных сил,	ПК-1.2.3
распределенных нагрузок? (с пояснениями).	11IK-1.2.3
19. Сформулируйте и прокомментируйте теорему о взаимности возможных работ	ПК-1.1.4
(Бетти).	1111 11111
20. Сформулируйте теорему Максвелла о взаимности перемещений.	ПК-1.1.4
21. Сформулируйте прием Верещагина для перемножения эпюр.	ПК-1.1.4
	ПК-1.2.3
22.Запишите и поясните формулу Симпсона.	ПК-1.1.4
23. Статически неопределимые стержневые системы - определение. Степень	ПК-1.1.4
статической неопределимости рам.	
24. Основные отличия статически неопределимых систем от статически	ПК-1.1.4
определимых.	
25. Назовите основные методы расчета статически неопределимых систем.	ПК-1.1.4
26. Метод сил. Заданная и основная системы, "лишние" неизвестные.	ПК-1.1.4
, , , , , , , , , , , , , , , , , , , ,	ПК-1.2.3
27. Изобразите трижды статически неопределимую раму, ее основную систему и	ПК-1.1.4
неизвестные.	ПК-1.2.3
28. Метод сил. Запишите канонические уравнения с пояснениями.	ПК-1.1.4
31	ПК-1.2.3
29. Каков физический смысл коэффициентов при неизвестных уравнений метода	ПК-1.1.4
сил.	ПК-1.2.3
30. Каков физический смысл свободных членов в уравнениях метода сил?	ПК-1.1.4
	ПК-1.2.3
31. Каков физический смысл произведений $\delta_{11} X_1$; $\delta_{12} X_2$; и. т. д.?	ПК-1.1.4
	ПК-1.2.3
32. Определение коэффициентов при неизвестных канонических уравнений	ПК-1.2.3
метода сил.	
33. Проверка коэффициентов при неизвестных в канонических уравнениях метода	ПК-1.2.3
сил.	
34. Определение свободных членов в канонических уравнениях метода сил.	ПК-1.2.3
35. Проверка свободных членов в канонических уравнениях метода сил.	ПК-1.2.3
36. Построение результирующей эпюры изгибающих моментов в раме при расчете	ПК-1.2.3
методом сил.	THE 1 1 A
37. Проверка результирующей эпюры изгибающих моментом в раме при расчете	ПК-1.1.4
методом сил.	THC 1 1 4
38. Раскройте суть гипотезы Винклеровского основания.	ПК-1.1.4
39. Поясните физический смысл коэффициента постели.	ПК-1.1.4 ПК-1.1.4
40. Дайте определение относительно коротких и балок бесконечной длины	ПК-1.1.4
41. Подчеркните отличительные особенности между дифференциальными уравнениями изгиба обычных балок и балок на упругом основании.	11K-1.1.4
уравнениями изгиоа обычных балок и балок на упругом основании. 42. Какими свойствами должны обладать функции Крылова.	ПК-1.1.4
такими своиствами должны осладать функции крылова.	ПК-1.1.4
43. Сформулируйте условия достаточной жесткости и прочности конструкций на	ПК-1.2.3
упругом основании.	ПК-1.1.4
44. Что понимается под термином «балка на упругом основании»?	ПК-1.2.3
45. Сформулируйте предпосылки, на которых построен расчет балок на упругом	ПК-1.1.4
основании?	1110 1.1.7
OPHODEMIA.	<u> </u>

46. Напишите общее выражение для интенсивности нагрузки балки на упругом	ПК-1.1.4
основании и сформулируйте смысл параметров, входящих в это выражение?	ПК-1.2.3
47. Напишите уравнение для изгибающих моментов балки на упругом основании	ПК-1.1.4
по методу начальных параметров?	ПК-1.2.3
48. Опишите технику написания выражения для М балки на упругом основании по	ПК-1.2.3
методу начальных параметров?	
49. Приведите дифференциальные соотношения между функциональными	ПК-1.1.4
коэффициентами A, B, C, D.	ПК-1.2.3
50. Какие начальные параметры входят в уравнения балки на упругом основании	ПК-1.1.4
и как они находятся?	ПК-1.2.3
51. Опишите технику решения задач балки на упругом основании по методу	ПК-1.1.4
начальных параметров?	ПК-1.2.3

Перечень заключительных тестов (ТЗ)

Тест Т3. Тест заключительный содержит одну задачу.

Типовая задача 1. Определение перемещений при плоском поперечном изгибе балки заданного сечения методом Мора.

Статически определимая балка заданного сечения нагружена равномерно распределенной нагрузкой, сосредоточенными силами и моментами.

Требуется:

- 1. Построить эпюры изгибающего момента и поперечной силы от заданной нагрузки.
 - 2. Определить прогиб и угол поворота заданного сечения методом Мора.

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания – описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю.

Шкала оценивания – порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблице 3

Таблипа 3

№ п/п	Материалы необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оцени- вания
1	Лабораторный практикум:	Выполнение всех	Все работы выполнены,	
	Лабораторные работы №№1, 2	лабораторных работ и	все задачи решены	
	Типовые задачи 1, 2, 3, 4	всех типовых задач		50
2	Тест к защите лабораторных	Прохождение	Все тесты пройдены	30
	работ ТЛ	компьютерного		
		тестирования		
	Итого количество баллов за выполнение лабораторного практикума с защитой (тесты)			50
3	Заключительный тест ТЗ	Правильность решения	Задача решена	20
		теста (задача)	Задача не решена	0
			Задача решена частично	1-20
	Итого максимальное количество баллов за заключительный тест			20
ИТОГО максимальное количество баллов				70

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценивания индикаторов достижения компетенций представлена в таблицах 4

Формирование рейтинговой оценки по дисциплине

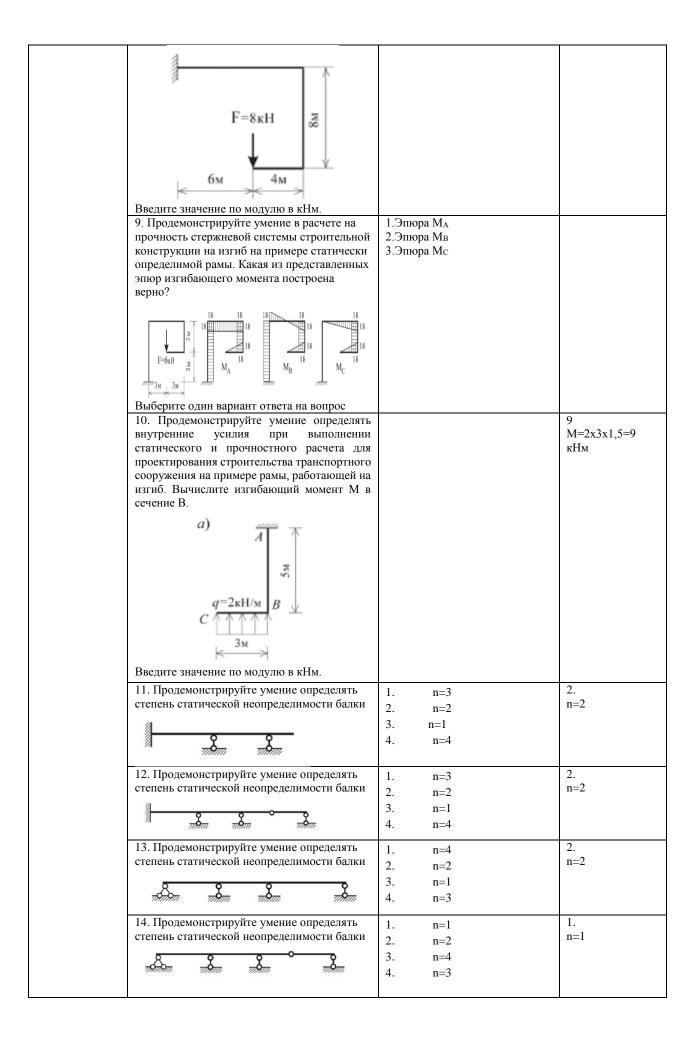
Таблица 4

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания
1. Текущий контроль	Лабораторные работы Типовые задачи Тест к защите лабораторных работ Заключительный тест	70	Количество баллов определяется в соответствии с таблицей 3 Допуск к зачету ≥ 50 баллов
2. Промежуточная аттестация	Перечень вопросов к зачету	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1120 баллов; не получены ответы на вопросы или вопросы не раскрыты – 010 баллов
	ИТОГО	100	
3. Итоговая оценка	«Зачтено» - 60 бал «Незачтено» - мен		1.)

5. Оценочные средства для диагностической работы по результатам освоения дисциплины

Проверка остаточных знаний обучающихся по дисциплине ведется с помощью оценочных материалов текущего и промежуточного контроля по проверке знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций.

Оценочные задания для формирования диагностической работы по результатам освоения дисциплины (модуля) приведены в таблице 5.


Таблица 5

Индикатор достижения компетенции Знает - 1; Умеет- 2; Опыт деятельности - 3 (владеет/ имеет навыки)	Содержание задания	Варианты ответа на вопросы тестовых заданий (для заданий закрытого типа)	Эталон ответа
---	--------------------	--	---------------

ПК-1 Выполнение расчетной части проектной продукции по отдельным узлам и элементам автомобильных дорог и по автомобильным дорогам в целом

ПК-1.2.3 Умеет	1.Продемонстрируйте умение рассчитывать степень статической неопределимости	Введите число.	$n_c = 7-3=2$
применять основные	многопролетной балки <i>a</i>)		
расчетные зависимости и			
методики выполнения	чг Степень статической неопределимости балки		
расчетов при	равна: 2.Продемонстрируйте умение определять	Введите число.	10
подготовке проектной	число простых шарниров при определении		подсчитывается в
продукции по автомобильным	степени статической неопределимости транспортной конструкции, расчетная схема		соответствии с определениями
д	которой представлена на рисунке:		простого и кратного
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			шарниров
0 2			
a			
М			
	atan aren aren		
	Количество Ш _{пр} = 3.Продемонстрируйте умение определять		4.
	степень статической неопределимости	1. система 1	системы 1, 2, 3
	стержневой системы. Статически определимыми являются системы	2. системы 1 и 2 3. системы 2 и 3	
	1. 2.	4. системы 1, 2, 3 5. системы 2, 3, 4	
		3. Cheremon 2, 3, 1	
	P		
	3.		
	3.		
	4.		
	4. Продемонстрируйте умение определять вертикальную опорную реакцию А в		$R_A = (F^*6)/5 =$
	строительной конструкции, расчетная схема которой представлена в виде статически		10*6/5 = 12 kH
	определимой рамы при расчете на прочность.		
	F=10κH		
	9		
	AI BI		
	man 5 _M man		
	Введите значение по модулю в кН.		
	5. Продемонстрируйте умение определять степень статической неопределимости		4
	системы строительной конструкции при		$n_{\text{CH}} = 3 *$ $K - \coprod = 3*2-2=4$
	расчете на прочность. Расчетная схема представлена в виде рамы:		
			

$E F = \infty$ Степень статической неопределимости рамы равна: Введите число.		
6. Продемонстрируйте умение применять формулу Мора для определения перемещений при плоском изгибе	$ \int_{l} \frac{N_{p} \overline{N}}{EA} dz $ 1. $ \int_{l} \frac{M_{p}^{(xp)} \overline{M}^{(xp)}}{GJ_{p}} dz $ 2. $ \int_{l} \frac{kQ_{p} \overline{Q}}{GA} dz $ 3. $ \int_{l} \frac{M_{xp} \overline{M}_{x}}{EJ_{x}} dz $ 4.	Ответ: формула 4.
7. Продемонстрируйте умение определять степень статической неопределимости системы строительной конструкции при расчете на прочность. Рама является	 статически определимой 1 раз статически неопределима 2 раза статически неопределима 3 раза статически неопределима 4 раза статически неопределима 	• 3 раза статически неопределим а
8. Продемонстрируйте умение определять внутренние усилия при выполнении статического и прочностного расчета для проектирования строительства транспортного сооружения на примере рамы, работающей на изгиб. Вычислите изгибающий момент М в заделке.		48 M = F*6 = 8*6=48 кНм

	15. Продемонстрируйте умение определять	1. n=2	4.
	степень статической неопределимости балки		n=1
		2. n=3	n-1
	Ŷ ° Ŷ	3. n=4	
		4. n=1	
	16. Продемонстрируйте умение определять	1. n=3	1.
	степень статической неопределимости балки	2. n=1	n=3
		3. n=4	
	9 9 9	4. n=2	
		4. 11–2	
	17. Продемонстрируйте умение определять	1. n=4	4.
	степень статической неопределимости балки	2. n=2	n=3
	q	3. n=1	
	***************************************	4. n=3	
		n=5	
	18. Продемонстрируйте умение определять	1. n=1	2.
	степень статической неопределимости балки	2. n=2	n=2
	q	3. n=4	
		4. n=3	
		7. II-J	
ПК-1.1.4	19. Свободные члены в системе	1. Перемещения в	2
11К-1.1.4 Знает	19. Свооодные члены в системе канонических уравнений метода сил по	основной системе от действия	2
знает классификацию	своему физическому смыслу – это:	единичной нагрузки	перемещения в
и сочетание	своему физическому смыслу — это.	2. Перемещения в	исходной системе
нагрузок и		исходной системе от действия	от действия
воздействий на		заданной нагрузки	заданной
автомобильные		3. Перемещения в	нагрузки
дороги		основной системе от действия	1 3
1		заданной нагрузки	
		4. Перемещения в	
		исходной системе от действия	
		единичной нагрузки	
	20. Неизвестные в системе канонических	1. Усилия или реакции	1
	уравнений метода сил по своему	2. Перемещения в	усилия или
	физическому смыслу – это:	основной системе от действия	реакции
		единичной нагрузки	реакции
		3. Перемещения в	
		исходной системе от действия	
		заданной нагрузки	
		4. Перемещения в	
		основной системе от действия	
	21 200000 00 Dry volve paper	заданной нагрузки	4
	21. Знаете ли Вы, чему равно количество	1. Числу опорных	4
	неизвестных при расчете статически неопределимых систем методом сил:	стержней 2. Количеству реакций в	Числу "лишних"
	пеопределимых систем методом сил.	опорах	связей
		3. Количеству участков	
		4. Числу "лишних"	
		связей	
	22. Знаете ли Вы, каким путем образуется	1. Введения во все	3
	основная система метода сил:	свободные узлы жестких	_
		заделок	отбрасывания
		2. Добавления связей и	"лишних" связей
		превращение системы в	и превращения
		кинематически определимую	системы в
		3. Отбрасывания	статически
		"лишних" связей и превращения	определимую
		системы в статически	
		определимую	
		4. Введения во все	
		жесткие свободные узлы	
		шарниров	

23. Канонические уравнения метода сил составляются из условия:	1. Отсутствия перемещений по направлению отброшенных связей 2. Наличия перемещений по направлению отброшенных связей 3. Равенства единице усилий во введенных связях 4. Равенства между собой перемещений по направлению отброшенных связей	1 отсутствия перемещений по направлению отброшенных связей
24. Коэффициенты при неизвестных в системе канонических уравнений метода сил по своему физическому смыслу – это:	1. Перемещения в основной системе от действия единичной нагрузки 2. Перемещения в основной системе от действия заданной нагрузки 3. Перемещения в исходной системе от действия заданной нагрузки 4. Перемещения в исходной системе от действия в исходной системе от действия единичной нагрузки	1 перемещения в основной системе от действия единичной нагрузки
25. Знаете ли Вы, какое предположение лежит в основе модели Винклера? Выберите один из вариантов ответа на вопрос	реактивный отпор основания изменяется по линейному закону реакция основания постоянна по длине балки з. реактивный отпор основания пропорционален прогибу балки 4. реактивный отпор основания пропорционален нагрузке	4. реактивный отпор основания пропорционален нагрузке
26. Знаете ли Вы, как можно представить модель Винклера с физической точки зрения? Выберите один из вариантов ответа на вопрос	1. пружины, расположенные на расстоянии 1м одна от другой 2. бесконечное количество несвязанных между собой пружин 3. бесконечное количество соединенных между собой пружин 4. упругая нить, натянутая на пружины	2. бесконечное количество несвязанных между собой пружин
27. Какой метод применяется при расчете балок конечной длины, расположенных на упругом основании? Выберите один из вариантов ответа.	метод интегрирования по частям иетод Мора метод начальных параметров иетод непосредственного интегрирования	3. метод начальных параметров
28. Какое из приведенных дифференциальных уравнений описывает изгиб балки, расположенной на упругом основании? Выберите один из вариантов ответа.	$EJv^{IV} + kbv(x) = q(x) - q_r(x)$ $2.$ $EJv^{IV} - kbv(x) = q(x)$ $3.$ $EJv'' + kv(x) = -M(x)$	1
29. Знаете ли Вы дифференциальные зависимости между функциями А.Н. Крылова? Укажите правильную дифференциальную зависимость. Выберите один из вариантов ответа. 30. Какая модель упругого основания	$1. \ Y_2' = Y_1 \ 2. \ Y_2' = -Y_1 \ 3. \ Y_2' = Y_3 \ 4. \ Y_2' = -Y_3 \ 1.$ Модель Юнга	2
наиболее часто применяется при расчете балок на упругом основании?	2.Модель Винклера 3.Модель упругого пространства	Модель Винклера

	4. Модель Пуассона	

Процедура проведения зачета осуществляется в форме письменных ответов на вопросы билета и решения задачи. Билет на зачет содержит 2 вопроса из перечня вопросов промежуточной аттестации п.2 и одну задачи. Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета.

Разработчик оценочных материалов, к.т.н., доцент

С.А. Видюшенков